色彩搭配的基本概念,是我们在运用色彩时常常遇见的问题,若能将这些概念了解,在颜色的搭配上自然比较占优势。
色相对比
将相同的橙色,放在红色或黄色上,我们将会发现,在红色上的橙色会有偏黄的感觉,因为橙色是由红色和黄色调成的,当他和红色并列时,相同的成份被调和而相异部份被增强,所以看起来比单独时偏黄,以**色彩比较也会有这种现象,我们称为色名对比。
除了色感偏移之外,对比的两色,有时会发生互相色渗的现象,而影响相隔界线的视觉效果,当对比的两色,具有相同的彩度和明度时,对比的效果越明显,两色越接近补色,对比效果越强烈。
明度对比
将相同的色彩,放在黑色和白色上,比较色彩的感觉,会发现黑色上的色彩感觉比较亮,放在白色上的色彩感觉比较暗,明暗的对比效果非常强烈明显,对配色结果产生的影响,明度差异很大的对比,让人有不安的感觉。
彩度(饱和度)对比
色彩和另一彩度较高的色彩并列时,会觉得本身彩度变低,而和另一个彩度较低的色彩时,会觉得彩度变高,这种现象称为彩度对比。在摄影实践中,常用灰、黑等低饱和度的背景来衬托高饱和度的景物。
三基色原理
在中学的物理课中我们可能做过棱镜的试验,白光通过棱镜后被分解成多种颜色逐渐过渡的色谱,颜色依次为红、橙、黄、绿、青、蓝、紫,这就是可见光谱。其中人眼对红、绿、蓝最为敏感,人的眼睛就像一个三色接收器的体系,大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生。同样绝大多数单色光也可以分解成红绿蓝三种色光。这是色度学的最基本原理,即三基色原理。三种基色是相互独立的,任何一种基色都不能有其它两种颜色合成。红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。红绿蓝三基色按照不同的比例相加合成混色称为相加混色。
红色 绿色=黄色
绿色 蓝色=青色
红色 蓝色=品红
红色 绿色 蓝色=白色
黄色、青色、品红都是由两种及色相混合而成,所以它们又称相加二次色。另外:
红色 青色=白色
绿色 品红=白色
蓝色 黄色=白色
所以青色、黄色、品红分别又是红色、蓝色、绿色的补色。由于每个人的眼睛对于相同的单色的感受有不同,所以,如果我们用相同强度的三基色混合时,假设得到白光的强度为100%,这时候人的主观感受是,绿光最亮,红光次之,蓝光最弱。
减色法
除了相加混色法之外还有相减混色法。在白光照射下,青色颜料能吸收红色而反射青色,黄色颜料吸收蓝色而反射黄色,品红颜料吸收绿色而反射品红。也就是:
白色-红色=青色
白色-绿色=品红
白色-蓝色=黄色
另外,如果把青色和黄色两种颜料混合,在白光照射下,由于颜料吸收了红色和蓝色,而反射了绿色,对于颜料的混合我们表示如下:
颜料(黄色 青色)=白色-红色-蓝色=绿色
颜料(品红 青色)=白色-红色-绿色=蓝色
颜料(黄色 品红)=白色-绿色-蓝色=红色
以上的都是相减混色,相减混色就是以吸收三基色比例不同而形成不同的颜色的。所以有把青色、品红、黄色称为颜料三基色。颜料三基色的混色在绘画、印刷中得到广泛应用。在颜料三基色中,红绿蓝三色被称为相减二次色或颜料二次色。在相减二次色中有:
(青色 黄色 品红)=白色-红色-蓝色-绿色=黑色
用以上的相加混色三基色所表示的颜色模式称为RGB模式,而用相减混色三基色原理所表示的颜色模式称为CMYK模式,它们广泛运用于绘画和印刷领域。
RGB模式是绘图软件最常用的一种颜色模式,在这种模式下,处理图像比较方便,而且,RGB存储的图像要比CMYK图像要小,可以节省内存和空间。
CMYK模式是一种颜料模式,所以它属于印刷模式,但本质上与RGB模式没有区别,只是产生颜色的方式不同。RGB为相加混色模式,CMYK为相减混色模式。例如,显示器采用RGB模式,就是因为显示器是电子光束轰击荧光屏上的荧光材料发出亮光从而产生颜色。当没有光的时候为黑色,光线加到最大时为白色。而打印机呢?它的油墨不会自己发出光线。因而只有采用吸收特定光波而反射其它光的颜色,所以需要用减色法来解决。
HLS(色相、亮度、饱和度)原理
HLS是Hue(色相)、Luminance(亮度)、Saturation(饱和度)。色相是颜色的一种属性,它实质上是色彩的基本颜色,即我们经常讲的红、橙、黄、绿、青、蓝、紫七种,每一种代表一种色相。色相的调整也就是改变它的颜色。
亮度就是各种颜色的图形原色(如RGB图像的原色为R、G、B三种或各种自的色相)的明暗度,亮度调整也就是明暗度的调整。亮度范围从0到255,共分为256个等级。而我们通常讲的灰度图像,就是在纯白色和纯黑色之间划分了256个级别的亮度,也就是从白到灰,再转黑。同理,在RGB模式中则代表个原色的明暗度,即红绿蓝三原色的明暗度,从浅到深。
饱和度是指图像颜色的彩度.对于每一种颜色都有一种人为规定的标准颜色,饱和度就是用描述颜色与标准颜色之间的相近程度的物理量。调整饱和度就是调整图像的彩度。将一个图像的饱和度条为零时,图像则变成一个灰度图像,大家在电视机上可以试一式调整饱和度按钮。
另外还有一个概念,就是对比度。对比度是指不同颜色之间的差异。对比度越大,两种颜色之间的相差越大,反之,就越接近。如,一幅灰度图像提高它的对比度会更加黑白分明,调到的极限时,变成黑白图像,反之,我们可以得到一幅灰色的画布。
我们了解了颜色的原理,我们在图像处理中就不会茫然,并且对于调整颜色也可以更快,更准确。
人眼接收色彩的方法:加法混色
我们见到的颜色,如苹果红色,其实都是在一定条件下才出现的色彩。这些条件,主要可归纳为三项,就是光线、物体反射和眼睛。光和色是并存的,没有光,就没有颜色,可以说,色彩就是物体反射光线到我们眼内产生的知觉。很早以前科学家已经发现光的色彩强弱变化,是可以通过数据来描述,这种数据叫波长。我们能见到的光的波长,范围在380至780毫米之间,随着波长由短到长,出现的色彩是由紫到红。不同波长的光所反射的强度是不同的,因此,测量物体所反射的波长分布,便可以确定该物体是什么颜色,例如一个物体在700至760这段波长内有较多的反射,则该物体倾向红色,如果在500至700这段波长内有较多的反射,则该物体便倾向绿色。通过测量物体反射光量的方法,科学家可以很精确地推定两件物体的颜色是否相同。
测量光量反射的方法固然很精确,但不好用,因为眼睛并非以波长来认知颜色。人类眼睛的网膜内分布着两种细胞,杆状细胞作椎状细胞,这些细胞对光线作出反应,便形成色彩的知觉。杆状细胞是一种灵敏度很高的接收系统,能够分别极微小的亮度差别,协助我们辨识物体的层次,但是却不能分辨颜色。椎状细胞较不灵敏,但是有分辨颜色的能力。所以在亮度很弱的情况下,物体看起来都是灰灰白白,因为椎状细胞在这时已不能发挥作用,只有杆状细胞在工作。
椎状细胞对光量的反应不是一样的。当一束光线射到眼睛网膜上,椎状细胞灵敏度最大的值分别位于波长为红色、绿色及蓝色的三个区域。即是说,眼睛只需以不同强度和比例的红绿蓝三色组合起来,便能产生任何色彩的知觉,因而红绿蓝可说是人眼的三基色。利用三基色色光的相加叠合,我们基本上能够模拟自然界中出现的各种色彩,这就是著名的光学三色原理。以这种方法产生色彩亦叫做加法混色。屏幕显像和摄影就是这种混色方法的具体应用。
印刷四色:减法呈色
印刷的呈色原理和加法混色不同。印刷是以一些微细的网点,把透明的油墨按一定规律分布于纸上来呈现色彩。网点分布较多的部分色彩较浓,分布较少的地方色彩便淡。透明油墨的选择也不是随意的,而是根据最能够吸收绿蓝三色光的份量来决定。因此,洋红(Mafenta)、青(Cyan)和黄(Yellow)便成为印刷的三基色。原因是洋红吸收吸收大部分的绿,青吸收大部分的红,黄吸收大部分的蓝。洋红与绿,青与红,黄与蓝这样的组合称作互补关系,或叫补色关系。印在纸上的网点,如果不与**网点接触,则见到的颜色便是印刷三基色。倘若其中两个基色网点重叠在一起,例如青与黄,由于黄墨吸收了光线中的蓝,青吸收了光线中的红,只有光线中的绿反射到眼内,因此我们便会见到绿色。如果三色网点全部重叠在一起,由于所有光均被吸收,我们便见到黑色。印刷就是采用这种色光递减的方法来产生万千色彩,因此亦叫减法呈色。喷墨打印、热升华打印和水彩绘画等都是这个原理的具体应用。
理论上,同等份量的洋红、青及黄印在一起,能产生灰黑色的,可是由于油墨生产未臻完美,青墨的纯度不及洋红的纯度,这样做出来的灰色总是偏红的。为了弥补油墨工艺的不足,于是便引入黑墨来加强灰色的效果,使印刷品能表现较佳的层次感,这就是我们现在印刷采用四色的原因。在这个基础上,有人甚至以黑墨完全替代同等的洋红、青、黄墨出现的地方,这种技术,分色上称为非彩色结构(GCR),早期的FreeHand软件,把RGB图像转换为CMYK,就是利用这种技术。以专色油墨替换色彩不够理想的地方,除了应用于灰色上,亦可应用于**颜色。Pantone的HexChome就是向这个方向出发,在传统四色之外加入专绿及专橙,以加强印刷中绿色及橙色不够理想的部分。
协调屏幕与印刷色彩的方法
虽然印刷能够复制千万种色彩,但由于采用减法呈色的缘故,在色彩的亮度上便有所减弱,一些较鲜艳的色彩便很难以印刷的方式表达。另一方面,屏幕由于采用加法呈色的技术,在色彩表达的范围上,确实较印刷丰富。这就是为什么在屏幕上看来漂亮的色彩,无法用印刷复制出来,导致屏幕与印刷在色彩上产生差异。解决的方法,要么就是改良油墨和纸张成分,使能够复制较鲜、较纯的颜色,不过这并非一朝一夕的事。另一种方法就是缩窄屏幕的色域来迎合印刷,使屏幕所见的即为印刷所得的。
所谓色域,就是一种设备能够记录或复制色彩的最大范围。人眼的色域为全部的可见光,在380至780这个波长范围之内,印刷的色域则由纸张和油墨共同构成,不同的纸张油墨配搭,便有不同的印刷色域,报纸的色域就不同于书纸,Pantone的色域也不同于DIC。**如屏幕、扫描机、打印机等亦各有各的色域,掌握一种设备的色域是有实际意义的,因为一种设备无法记录或复制在色域以外的色彩。例如,正常的情况下,人眼无法见到在红外线或X光下的色彩,而一些人眼很容易辨别的色彩,像各种金属色,在扫描机上却不容易记录。我们能做到的最多是由一种设备的色域模拟另一种设备的域。怎样在模拟过程中,使人眼觉得两种设备的色域较相近,便是色彩管理的重要主题。
进行色彩管理,建立色彩标准
要管理色彩,便须为色彩的表示和传递建立一套标准。目前较流行的色彩管理系统如LinoColor、Agfa的Phototone等,都是向着这个方向发展,透过一套描述设备色域的标准规格(ICC对照档),利用颜色计算软件来进行色域的统一转换运算,以减少色彩资料在传递过程中,因色域和规格不同而产生的色彩偏差和失真。实施这些色彩管理系统,首先要找出设备的色域特质。而描述色域最常用的方法,就是CIELab是国际照明协会,根据人眼视觉特性,把光线波长转换为亮度和色相的一套描述色彩数据,其中L是描述色彩的亮度,a代表描述色彩偏红偏绿的程度,b则代表描述色彩偏黄偏蓝的程度。在CIELab色彩空间内,每一个人眼可见的颜色,都有一个属于该颜色的位置,通过比较两种颜色位置的远近,我们便可以判定两种颜色的近似程度。由于可见光线光谱是这套数据的基础,因而能够涵盖由屏幕和印刷所产生的色彩,亦可用来代表人眼的色域。 |